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with benzenoid rings are more important than struc- 
tures with quininoid rings. I t  is of interest to test the 
application of this rule to some of the structures and its 
effect on the bond-length predictions. 

In the ease of pyrene, two of the six structures each 
have three benzenoid rings, two have two benzenoid 
rings, and two have only one. If  the contributions of 
these structures to the normal state are weighted in 
proportion to their benzenoid character, the most im- 
portant effect is to increase the length of the central 
bond in Fig. 4 to 1.46 A., in good agreement with the 
observations. The four inner bonds adjacent to it be- 
come 1.40 A. instead of 1-42 A., while the other four 
long bonds on the outer edge become 1.50 A. instead of 
1.46 A. The general effect is thus to make some qualita- 
tive improvement in the predicted bond lengths. 

When the dibenzanthracene structures are treated in 
the same way the effect is disappointing. The predicted 
bond lengths in the central ring become equalized at 
the benzene value of 1.39 A., while in other parts of 
the molecule the values obtained are more extreme than 
those shown in Fig. 9 and not in any better agreement 
with the observations. 

Of the twenty coronene structures, one contains five 
benzenoid rings, eight contain four benzenoid rings, six 
contain three benzenoid rings, three contain two benze- 
noid rings and two contain only one benzenoid ring. 
Weighting the contributions of the structures according 
to these benzenoid characters has little effect on the 
dimensions given in Fig. 13. Rather more extreme 
values are obtained for the bond-length variations, but 
the general picture is the same. In particular it may be 
noted that  no combination of the Kekul@ structures is 
capable of differentiating the longer bonds of the outer 
ring from the bonds of the inner ring. 

The general impression based on our very limited 
data is that  application of the Fries rule tends to im- 
prove the agreements slightly, and this finding is in 
accordance with chemical experience as well as 
theoretical expectation. 

Figs. 2, 6 and 11 are reproduced by kind permission 
from the Journal of the Chemical Society. 
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A method suitable for indexing X-ray powder photographs of compounds which give long-spacing 
reflexions is described. The method reduces the problem to that of a two-dimensional lattice. As an 
example, the unit cell of potassium caproate is deduced from its powder pattern by mear~s of two 
graphical variants of the method. Limitations of the method are discussed. 

Introduction 

Crystal structure study of many long-chain substances, 
such as certain forms of soaps, fats and fat ty acids, is 
considerably hampered by the difficulty of growing 
single crystals large enough for a complete X-ray dif- 
fraction analysis. However, a considerable amount of 

information can be obtained from powder photographs 
and from other properties of the long-chain compounds, 
provided the 'long spacings' can be measured. This 
is due to certain characteristic peculiarities of their 
crystals, which reduce the three-dimensional problem 
of the determination of their crystal lattice to a simpler 
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two-dimensional  problem within a single sheet or layer 
of the space lattice, and, al though the information 
gained may  not be as complete as tha t  obtained from 
single-crystal work, it may  prove to be of considerable 
value. 

We shall  discu~'s only  those compounds  whose long 
spacings  can be u n a m b i g u o u s l y  identif ied from powder 
photographs.  These compounds may  be called 'long- 
spacing compounds ' ,  in order to distinguish them 
from ' long-chain compounds ' ,  such as polymers, 
which do not necessarily give i(tentifiable long-spacing 
reflexions. 

Long-spacing compounds usually crystallize in very 
thin plates, the only developed faees being {001}. Oc- 
casionally they crystallize in needles, but these can be 
regarded as derived from plates by faster growth along 
one of the short axes; the rod-like molecules as a. rule 
then do not lie along the needle axis, but rather per- 
1)endieular or at an angle to the needle axis. In this 
respect, they differ from the long-chain t)olymer fibres, 
which usually have molecules oriented along the fibre 
axis. 

By a simple rearrangement  of the terms, we can 
write equation (2) a.s follows: 

*'~ h2a,2 fl* k2b*'a D~:~ = sin 2 -4- sin 2 (x* | 
- 2 h a *  sin fl* x kb* sin a* !~O-S ~*-'-('°s f i * -  . . . .  cos y*~ 

s i n  0~* Si l l  /3"  

1 + (lc* +ha,* cos fl* + k b *  cos :¢*)z 

(3) 
As vos ~* cos fl* - c o s  y* 

. . . . . . . . . . . . . . . . . . . . . . . . .  = COS 9/, 
sin u* sin 13" 

we can write equation (3) in the tbrm: 

Dhk 1 = Hhh. q- L~. z , 

where the following notation is used" 

ttha: = h2A,2  + k 2 B , 2 _  2 h k A *  B* cos y, 

Lh*kz = lc* + hA * cot fi* + k B *  cot ~*, 

where A * = a* sin fl*, 

B* = b *  sin ~*. 

(4) 

(5) 

(6) 

(7) 

T h e o r y  o f  the index ing  m e t h o d  

In a powder photograph, the crystal spacings d/n  are 
given by 

d/n = A/2 sin 0. ( 1 ) 

Their reciprocals, n . d =  l)*kl , are the distances of the 
points having Miller indices h, k, l, from the origin of the 
reciprocal lattice. (All quanti t ies  referring to reciprocal 
space or reciprocal lattice will be marked with an 
asterisk, *.) 

In order to index a triclinic crystal we have t.o find 
six unknown parameters,  the edges a*, b*, c* and the 
angles ~*, fl*, y* of the reciprocal unit cell, fi'om a large 
number  of equations of the form: 

*~ /)*2 C*"' ~ *  1)ha z = h"(l*" + k:: + l" + 2klb*c* cos ) (2 
+ 2 l h c * a *  cos f i * + 2 h k a * b *  cos y*~" ) 

where h, k, l, are whole nunl/)ers, also unknown. 
The problem is t'urther complicated by missing re- 

ttexions due to the unknown space group absences, so 
tha t  in practice the indexing of powder photographs 
can be successfifily a t tempted  only when the number  of 
unknown parameters is small. The indexing methods 
hitherto used were successfifily applied only t.o eryst.als 
of high symmetry ,  such as cubic, orthorhombic,  tetra- 
gonal and hexagonal. 

As the trielinic crystal involves six parameters,  it 
appears that  the task of indexing a powder photograph 
is very difficult. However, for crystals exhibi t ing long 
spacings, considerable simplifications bring the number  
of unknowns to be determined s imultaneously from 
six down to three or even two, thus bringing the general 
problem of a triclinie crystal within practical reach of 
solution. 

For crystals with long spacings c* is much smaller 
than  a* and b*. In equation (4), c* does not appear  
in H*, and the values of H* represent a two-dimensional 
reciprocal lattice given by equation (5), having re- 
lat ively large cell edges. On the other hand, the value 
of L* is a linear function of l, and on variat ion of l it 
changes by much smaller steps than  the variat ion of H* 
when h and k are varied, as c* is small. For certain 
values of l, it can also a t ta in  a small  value, so tha t  L .2, 
a.lthough, in the general case of no symmetry ,  always 
positive, can approach rather  closely zero, or even 
a t ta in  zero in special eases of higher crystal symmetry .  

Equat ion (4) ea.n thus be easily visualized: the 
powder diffraction pat tern of a long-spacing compound 
is composed of a large number  of bands of closely spaced 
lines, each band comprising all lines having the same 
values of h and k, and beginning with a crowded ' h e a d '  
whose distance from the origin in reciprocal space is 
equal t.o H*;  however, at. the head of the band need be 
neither (hkO) nor the most intense line. As the chain 
length of the molecules increases, the value of c* de- 
creases, and the lines in each band are more crowded. 
As the values of H* are independent of c*, they are 
invariant  for a series of substances all in the same 
inodifieation, differing in long spacing only. 

I f  the resolving power of a powder camera were 
sufficient and the background absent,  so tha t  all the 
weak lines could be measured, the problem of indexing 
a powder photograph of a triclinic crvst.al would be 
resolved first to the solving of the planar  lattice given 
by equation (5), which contains only three constants A *, 
B* and y to be determined. Once these constants are 
known, the application of equation (6) would yield the 
remaining two unknowns, =* and fl*, and the problem 
would be solved. 
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Use of the density of  the crystal 
The density p of the crystalline powder can usually be 
accurately measured. The volume occupied by one 
molecule can then be calculated from 

V1 = 1.6604M/p (in A.a), 

or VI= 1.6502M/p (in kX.a), 

where M is the molecular weight and V 1 is the volume 
per molecule. If  there are n molecules per unit cell, the 
volume of the unit cell is Vn =nV1. 

Returning to the reciprocal space, we obtain for the 
reciprocal volume per molecule in A. -a, 

V~= 1/Vl=p/l'66M, (8) 

and for the reciprocal volume of the unit cell: 

* V~;/n. Vn= 
The value of V~ can usually be regarded as known, 

but the factor n, representing the number of molecules 
in the unit cell, which is a whole number, is unknown. 
The following equation can then be used with advan- 

tage: V*=a*b*c* sin a* sin/3" sin ~, (9) 

and, as c* is known, this can be written as 

l/F/c * =nA*B* sin ~. (10) 

The right-hand side of this equation has a simple 
meaning as the area of the unit cell of the planar lattice 
defined by equation (5), multiplied by the factor n. 

If  any two of the three constants A*, B*, ~, are 
known, then equation (10) gives the third, when 
reasonable values of n are assumed. In the first step 
of the calculation, the solution of the problem of a 
triclinic crystal is reduced to a determination of only 
two constants, equivalent to the recognition of two 
heads of bands of lines on the photograph. 

I f  only the head of the first band can be recognized, 
the method cannot be applied to a triclinic but it is 
still applicable to a monoclinic crystal, for which ~ = 90 ° 
and ) ,=90 ° so that  equations (5), (6) and (10) are 
simplified into 

H,2 = h2A,9 + k2B,2, (11) 

L* =/c* +hA* cot fl*, (12) 

V~/c* = hA*B*. (13) 

However, sometimes even the head of the first band 
might not be recognized without ambiguity, but if one 
deals with a whole series of substances, known to be in 
the same modification, then it may be possible to 
decide which of the possible solutions is the most 
probable. 

Use of the inter-edge angles of  the crystals 
Owing to the thinness of the crystals of the long-spacing 
compounds, as a rule, only the {001} faces are well 
developed, so tha t  goniometric measurement of the 
interracial angles is impracticable. Only the inter-edge 

angles on the periphery of the plate are accessible to 
measurement. 

The crystals usually adhere with their {001} faces to 
the microscope slide, so tha t  both the a and b crystallo- 
graphic axes lie in the plane of the slide. I f  the inter- 
ference figure can be seen, and if the crystal is mono- 
clinic or orthorhombic, the directions of the a and b 
axes can then be determined, so tha t  all the edge angles 
can be measured from the b cell-edge and in the (001) 
plane. 

The edge indices will be enclosed in square brackets. 
Two crystal faces (hkl) and (h'k'l') intersect in an edge 
having indices [h"k"l"], given by 

h"= kl [ k,,=[ lh, l l,,=' hk, 
kT ' l'h' ~' h'k I 

(Zachariasen, 1945). 
For a plate, one face of which is (001), any other face 

having indices (hkl) would form an edge having indices 
[kh0] independent of the index 1 of the plane. The (100) 
plane would thus form [0i0] edge, and the (010) plane, 
[100] edge. 

Let ¢[hk01 be the inter-edge angle between [010] and 
[hk0]. Then, for a monoclinic crystal, 

tan ¢lhl~01 = ha~feb, 

or, using relations (7), 

tan ¢lhk01 = hB*/kA *. 
The information obtained from the measurement of 

the inter-edge angles is thus complementary to the in- 
formation from the density measurements, the former 
giving the ratio, the latter the product of the two lattice 
constants A*, B* of the reciprocal plane lattice (11). 

Graphical application of the indexing method 

Equations (4), (5) and (6) lend themselves to a 
geometrical representation, so that  the indexing can 
be done most conveniently by graphical methods. 

Two graphical methods have been devised; their 
application to the same soap powder pat tern is shown 
in Figs. 1 and 2. 

In the first method, shown in Fig. 1, it is necessary 
only to plot, preferably in Indian ink, on as large a scale 
as possible, all the observed reciprocal spacings in the 
form of concentric semicircles each of radius D* and 
centre at the origin of rectangular co-ordinates with 
a horizontal, X-axis and a vertical Y-axis. A separate 
straight strip of paper is then prepared (not shown in 
Fig. 1), along the edge of which is marked a series of 
equidistant lines spaced by c* from each other. I f  this 
strip is moved over the graph, keeping it parallel to the 
X-axis, till its intersection with the Y-axis is at  a 
distance H~k from the origin, then a position can be 
found at which the marks on the strip coincide with 
all the circles belonging to the same band. By finding 
such a coincidence, the head of the band can be re- 
cognized and marked on the Y-axis. The coincidences 
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are marked  in Fig. 1 by black dots; the corresponding 
Miller indices are marked above each dot. 

The second graphical method,  shown in Fig. 2, does 
not use a separate strip of paper for finding coincidences; 
instead of using the strip, the equidistant  marks  spaced 
by c* from each other are marked on the X-axis  of the 
graph. Each mark so obtained then serves as a centre 
of a complete set of concentric circles each of a radius 
D*. Numerous intersections of the circles thus result. 
I t  can be easily proved that  if a band H~k exists, all the 
eircles belonging to this band would intersect at  a series 
of points all lying at a distance H~k from the X-axis.  
In practice, owing to the repetition of the pa t te rn  of 

the form of numerous intersections of cireles. In 
praetiee, it is more accurate  than the first method, as 
the best point of intersection of a large set of circles all 
belonging to the same band can be found with consider- 
ably higher accuracy than  the best-fitting position of 
the movable graduated  strip. In addition, the scat ter  
of the set of circles not exactly passing through their 
common point of intersection, owing to the errors of 
measurement ,  gives a good indication of the accuracy 
of the measurements .  

There is, however, one d isadvantage  of the more 
condensed presentat ion of the second method,  especially 
when a small scale is used : the diagram tends to be over- 

. . . . .  . 

~--~__-7-_£ o~-_:~_- . ..... 

~ _ . Z - - -  ; ,__~, < - .  --... - % ,  -%- 

C* 8" 

Fig. I. Application of the first graphical method. Indexing of 
potassium caproate powder pattern. 

the diagram along the X-axis with the identi ty period 
c*, it is necessary to investigate only a narrow strip of 
the diagram running parallel to the Y-axis, the width 
of which is tha t  of the identi ty period. 

The width of this strip is fur ther  reduced to ~c* 
owing to a line of symmet ry  parallel to the Y-axis and 
passing at a distance ½c* from the origin. It. is thus not 
necessary to draw full cireles; only small ares of each 
set of eircles, which pass through the chosen strip, are 
required. (In Fig. 2, in order to prevent, confllsion on 
the scale of the figure, which is much smMler than is 
used in practice, many  arcs of eireles have been 
omitted.) 

The second method has several advantages  over the 
first method. It  economizes paper, as only the narrow 
strip is to be preserved for reference. It records at  once 
permanent ly  all the possible solutions of the problem in 

H2* 

H,*, 

H,* 

. . . . . . . . . . . .  . . . . . . . .  . . . . .  _ _ 2 _ _ 1  . . . .  O -  . . . . . .  O -  . . . . . . . . . . . .  

Fig. 2. Application of the second graphical method. Indexing 
of potassium eaproate powder pattern. 

erowded, so that. the indexing of the lines is more 
difficult than  in the first method. 

Once the heads of the H* bands are found by either 
method, the plane latt.iee (5) or (1 I) ean be constructed 
in the following way (shown in Fig. 1 only). 

When the head of a first, band is loeat,ed and the 
second band cannot be found bv inspection, an a t t empt  
may  be made to locate it by a.ssmning that  the erystal  
is monoelinic, and using equation (18). I f  two heads are 
loeated, equation (10) may  be used t.o determine 7. 
Once the eonsta.nts A*, B* and y are det.ermined, all the 
values of H* ean be found graphically by plotting (pre- 
ferably in pencil, so tha t  al terations may  be made) on 
the same graph the plane lattice (5) or (11) and drawing 
circles with centre a.t the origin (shown in Fig. 1 as 
dashes) through its points till they intersect the }'-axis: 
these points may then be confirmed as heads of bands 
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either by applying the paper strip through them and 
observing coincidences with the Indian ink circles, or 
by finding intersections of the circles by the second 
method, till all the reflexions are accounted fbr. 

Next comes the determination of the angles c¢* and 
fl*. Two bands are chosen, preferably H* and H0*l 10, 

In general, the choice of the angles a* and t*  is not 
unique; in fact, any points on the first two independent 
bands can be chosen having index/--0.  If  one point of 
the band lies accurately on the Y-axis, it follows that  
the crystal cannot be triclinic, as ~* is a right angle. 
Otherwise the best practice is either to choose the 
strongest reflexion (which may lie some distance from 
the head of the band) or the reflexion nearest to the 
Y-axis, as having index /=  0. The distance of this point 
from the Y-axis is then 

L ~ o = h A *  cot f l *+kB*  cot c¢*, (14) 

or for a monoclinic crystal 

L~eo=hA* cot fl*. (15) 

If  the crystal is triclinic, the two independent values 
of L* give us two equations from which the two un- 
knowns cot a* and cot t*  can be obtained. Once these 
are fixed, distances L~ko for all the other bands should 
be calculated and confirmed from the graph. 

From the construction six constants are thus obtained 
which are c*, A*, B*, }', c¢*, t*  arranged in the order as 
obtained. 

From these, the constants of the unit cell can be 
calculated by means of the following equations" 

a= l / (A* sin},); b= l / (B* sin}'); 

cos }'*=cos ~* cos f l* - s in  ~* sin t*  cos }', (16) 

cos t*  cos } '*-cos c¢* 
cos a = sin t*  sin }'* ' 

cos ~* cos W*-cos t*  
cos fl = sin c¢* sin }'* ' 

1 1 
C=c* sin ~ sin fl*= c*sin 0~-*-~n fl" 

Refinement of  the lattice constants 

If the measurements are of a high degree of accuracy, 
their accuracy may not be utilized to the full extent by 
the use of the graphical methods described, as any 
graphical method is necessarily limited in accuracy by 
the size of the graph that  can be used in practice. I t  
may thus be desirable to apply to the problems com- 
puting methods, which are not limited in accuracy, and 
to combine the measurements by the method of least 
squares. The equations (4), (5) and (6) are suitable for 
this purpose. 

Let us assume that  a sufficient number of lines in 
a given band was unequivocally identified and indexed 
and that  their spacings were measured. In a band of 

ACI 

constant Miller indices h and k, Hk* ~ is constant. We 
can write equation (4) as follows" 

D** _ r4*" *~ 2K~flc* + I% .2, hk~-- ~." hk + K ~  + 

where K~k = hA* cot t *  + k B* cot c¢* 

is also constant for a given band. 
Let us write 

(D~kdc*) 2-12 = Y i ,  1 = x ,  

(H~./c*)2 +(g~k/c*)~=q, and 2 ~ k / c * = p .  

We thus obtain n linear equations 

y i = p x i + q ,  i = l , 2 , . . . , n ,  

where x i are whole numbers, Yi are known from measure- 
ment, and p, q are two constants to be determined. 

In order to determine p, q with highest possible 
accuracy any of the methods of calculation of the 
constants in a linear law can be used. If  the Gaussian 
method of least squares is used, then, assuming that  all 
the equations have equal weight, 

p = P / U ,  q=Q/U,  
where 

P = nZxi y~ - Z x  i Zyi, Q = Zx/~ Zyi - Zxi Zxiy i ,  

u = n Zx~-  (Zxy .  

The probable errors in the values ofp  and q are then 

c¢.=0.6745 {nXS~/(n- 2) V}½, 

c%--0.6745 {Xx~ Y_,8~/(n-2) Up, 

where ~ =Y'i - Yi , 

and where Y'i are values calculated from the equation 
y~ =px~ + q, by using the calculated values of p and q. 
The formulae do not apply to equations having unequal 
weights. 

Once p, q are determined, we can calculate H*, K* 

from H~I~ = c* ( q -  ¼p2).~ and K ~  = 1pc*. 

The calculation of the other lattice constants can 
then proceed on the same lines as described in previous 
paragraphs, i.e. Hi* o gives A*, H~I gives B*, Hi* 1 gives 
}', K~0 and K~I give then t*  and u*, etc., so that  the 
best values of all the parameters of the unit cell may 
be obtained together with their probable errors. This 
method of least squares is not limited to powder photo- 
graphs; it can be used for measurement of single crystal 
photographs if required. I t  has been successfully used 
in determining accurate values of the unit cell of 
potassium caprate (KC10H1902) from its powder photo- 
graph and single crystal photographs, details of which 
will be published elsewhere (Vand, Lomer & Lang, 
1947). 

Example of  the application of  the graphical method 

As an example of the application of the graphical 
method the unit cell of potassium caproate (KC6ItnO 2) 
is derived from its powder pattern. This soap has been 

8 
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chosen for its c o m p a r a t i v e l y  small  value  of the  long 
spacing c sin fl ( =  18.89 kX.) ,  so t h a t  the  Figs. 1 and  2, 
reproduced on a small  scale, are not  u n d u l y  over- 
crowded. This ,  on the  o ther  hand,  has a d i s a d v a n t a g e  
t h a t  the  ' h e a d s '  of the  bands  are much more spread out  
t h a n  in o ther  cases, so tha t  t h e y  are r a the r  more 
difficult  to detect  on first inspect ion t h a n  in comt)ounds 
with  rea l ly  large long spacings.  

The  s t ruc tu re  of po tass ium caproa te  has not ye t  been 
descr ibed:  we found t h a t  there  exist  several  c rys ta l l ine  
forms of po tass ium soaps and  t h a t  the  po tass ium 
eaproa te  inves t iga t ed  belongs to a form I)rovisionally 
labelled as A. 

The  powder  p a t t e r n  was ob ta ined  by Lomer  (un- 
publ i shed  work) wi th  a 12.5 era. focusing c~unera, using 
Cu K a  nickel-f i l tered radia t ion .  The measu remen t s  
are g iven  in Table  1. Re la t ive  in tens i t ies  of the lines 
are expressed on a scale of the  s t rongest  shor t  spacing 
line t a k e n  as 100, and  are g iven in the first column.  In  
the  second co lumn are given values  of n/d expressed in 
kX.  -~ In  the  th i rd  co lumn are given the itMices of the  
lines, ob ta ined  by  the  graphica l  index ing  methods ,  as 
described.  

By  a p p l y i n g  the  first and the  second graphica l  
method ,  a.s shown on Figs. 1 and  2, the  c rys ta l  was found 
to be p robab ly  monoel inic ,  with A* =0 .1254  kX.  -1 and  
B* =0-1744 kX.  -1 Assuming  n = 4  molecules  per  un i t  
cell, nA*B*=O.0875, which is in good a.greement 
wi th  the  va lue  of l'~/c* ca lcula ted  f rom the  den- 
s i ty .  

T a k i n g  for the  (200) reflexion t ha t  which gives the  
angle  fl neares t  to 90 °,/3 = 92 ° is obta ined .  This  gives u s  

the  folh)wing values  of the  uni t  cell: 

a = 7 . 9 7 k X . ,  b = 5 - 7 3 k X . ,  f i = 9 2  ° , 

c s i n / 3 =  18.89 kX. ,  c =  18.90 kX.  

I t  should be noted  t ha t  the  whole (10/) 1)and is 
p robab ly  missing,  arid in add i t ion  the (010) reflexion of 
the  (0l/)  band  is p robab ly  missing.  There  is a t e n t a t i v e  
ind ica t ion  of a glide p lane  and  a screw axis,  but, t he  
d e t e r m i n a t i o n  of the  space group ix not possible from 
the  above d a t a  given by  powder  pho tographs .  The  (1 ll)  
band  is diffuse. 

Table  1. Pou'der diffraction patteru c( potassium 
caproate (form A) 

Rela.tivo Relative 
intensity n'd Index intensity n/d It~(tex 

200 0.052,~ 001 1 0.4102 t 
l 0.1052 002 l 0.4242 t 
1 0.1596 003 2 1).434q~ t 
3 0-1825 011 59 0.4432 ! 
3 0.2036 012 2 0.456() t 

{0.2166} 
40D 0"2222 110.+ 5 0"4617 t 
10 ()'2361 013 2 ~b4774 t 
30 0.2512 20t~ 2 o.4~27 t 
30 0.2694 20~? 10 (b5023 400t 

2 11.2745 014, 2o2 5 0.510s 40"~t 

100 0.3047 210 1 0.534~) + 
g0 0.3096 211, 21 [ S o.5479 -~ 

1 0.3177 015 3 ~-51i57 -~ 
40 tl.321)2 212 1 (t.5880 + 

1 0'3423 213 1 0.6006 ]- 

1 0.3492 02o 2 0-612(.) + 
3 o.3535 021 2 ().(1989 + 
3 0.3643 t . . . . . . . .  
l ( I . 3 7 1 3  t . . . . .  
1 t ) . 4 0 0 ( ;  + . . . .  

D = D i f f u s e .  
t There are more than two possible ways of indexing those 

reflexions. 

The  following da ta  were used:  

Molecular weight M = 154.16 
Observed density p = 1-182 g.('m. ~ 
Reciprocal volume o(,cupied by one I '*=4.646x 10-3kX. -a 
molecule 

Reciprocal long spacing c*= 0.05293 kX. -1 
Reciprocal area of the unit cell of the V*/c* = 0.0887 kX. -2 

planar lattice per single molecule 
Inter-edge angles could not be measured. 

C o n c l u s i o n s  

Tile me thod  described is not as cert, a in as single c rys ta l  
methods ,  ma in ly  for the  fol lowing tea.sons: 

1. In  a powder  pho tog raph  m a n y  reflexions escape 
detec t ion ,  whereas  t hey  could be easi ly  regis tered on 
a single c rys ta l  pho tograph .  Such reflexions +nay be 
vi ta l  for deciding the  d imens ions  of the  un i t  cell, and  
especial ly the  s y m m e t r y  and  space group of t l le 
crys ta l .  

2. Even  if the  chemical  pu r i t y  of the  samples  is 
gua ran teed ,  the  modif icat ion under  inves t iga t ion  m a y  
be c o n t a m i n a t e d  by  the  presence of a n o t h e r  modifi- 
cat ion of the  same subs tance ,  g iv ing rise to add i t iona l  
diffract ion rings. Such rings m a y  be very  confusing 
when using the  me thod  described,  whereas  th is  diffi- 
cu l ty  rare ly  arises in single c rys ta l  work. 

3. Even  i fa  sufficiently nmnerous  series o f subs tam,es  
differing in chain length is avai lable ,  it is not cer ta in ,  
a priori, t h a t  the  series is all in the  same crys ta l l ine  
modif icat ion.  A useful cr i ter ion is t.o inves t iga te  tile 
long spacings  and  the  densi t ies;  if  the  long spacings  do 
not  form a l inear  funct ion  of the  chain length and  the  
areas l'~./c* are not  cons tan t ,  there  are different modifi- 
cat ions present .  

4. I f  the  c-edge is too short  it m a y  be difficult to 
re('ognize the  bands  on the  g raph  w i t h o u t  a m b i g u i t y ,  
and  there  m a y  even be difficulties in recognizing c*. On 
the  o ther  hand ,  if  the  c-edge is too long, the  ind iv idua l  
bands  m a y  become unresolwtble  by  the  camera .  

Owing to these  l imi ta t ions ,  the  index ing  m e t h o d  for 
pmvder  pho tog raphs  here descr ibed should not be re- 
garded  as an equ iva len t  to a. single c rys ta l  me thod ,  bu t  
only  as an a l t e rna t i ve  when  single c rys ta l s  are no t  
avai lable .  However ,  in spi te  of its l imi ta t ions ,  the  
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method has been applied with success to homologous 
series of sodium, potassium, l i thium and silver soaps 
containing from four to twen ty  carbon a toms in the 
hydrocarbon chains. 

I wish to t h a n k  Mr A. Lang fbr the prepara t ion of the 
potassium caproate  and Mr T. R. Lomer for measure- 
ment  of the photographs,  and the Directors of Lever 

Brothers  and Unilever Limited for permission to 
publish this paper.  
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Die Kristallstruktur des einwertigen Kupferazids, CuN3 

VON HEINZ WILSDORF 

lnstitut fiir allgemeine Metalllcunde, G6ttingen, Deutschland 

(Eingegangen 15 Januar ]948) 

CuN 3 belongs to the space group C~h-I41/a with cell dimensions a = 8"653 _+ 0.01 A., c -- 5"594 + 0.01 A., 
c/a -- 0.646. The observed density is 3.26 g.cm. -3, giving Z = 8 and a calculated density of 3.34 g.cm. -'~ 
The atomic positions are: 8 Cu at  (d); 8 N t at  (c); and 16 NH at (f) with parameters x = 0.077, y = 0" 173, 
z = 0.250. The structure consists of Cu ions and of N 3 groups which are arranged in chains in the 
direction of the body diagonal of the cell. The structure is not related to any known standard type. 

W~thrend die s t rukturel l  bekannten  anorganischen 
Azide nur als ein- oder zweiwertige Verbindungen vor- 
kommen,  bildet die Stickstoffwasserstoffs~ure mit  
Kupfer  das Monoazid CuN 3 und das Diazid Cu(Na) 2. 
Somit  ist ein Vergleich von S t ruk turen  mit  einer oder 
zwei Na-Ket ten  bei dem gleichen Metall mSglich. Als 
erster Tell der Untersuchung soll in dieser Arbeit  die 
S t ruk tu r  des CuN 3 beschrieben werden. 

Die Darste l lung des CuN 3 wurde zuni~chst durch 
WShler & Krupko  (1913) und Mart in (1915) bekannt .  
Sic reduzierten eine Kupfersulfat lSsung mit  Kal ium- 
bisulfit, gaben sic zu Nat r iumazid  und beobachteten 
einen feinen weissen Niederschlag (Verfahren I). Bei 
eigenen Versuchen nach diesem Verfahren konnten  
Kris ta l lnadeln bis zu 3 ram. L~nge erhal ten werden, die 
rSntgenographisch nach dem Drehkr is ta l lverfahren un- 
tersucht  wurden. Die Aufnahmen  ergaben tetragonale 
Symmetr ic  mit  a = 8,64 A. und c = 5,60 A. Eine zweite 
MSglichkeit der Darste l lung wurde yon St raumanis  & 
Cirulis (1943) beschrieben. Danach  l£sst fnan w~issrige 
H N  a auf  Kupferpulver  einwirken, das nach mehreren 
Tagen in eine farblose Substanz iibergeht (Verfahren 
I I ) ,  die dieselben Interferenzen wie die nach Verfahren 
I dargestell ten Kristal le zeigte. Aus den unregel- 
nfiissigen Aggregaten konnten keine Einkristal le  
isoliert werden. 

Ffir die genaue Bes t immung der Gi t t e rkons tan ten  
(naeh Straumanis)  wurde ein P r~pa ra t  nach Verfahren 
I I  gew~ihlt, das a = 8,65 a _+ 0,01 A. undc  -- 5,59~ _+ 0,01 A. 
ergibt;  c/a=0,646. Die pyknometr isch  bes t immte  
Dichte betr~gt  p = 3,26 g.cm. -z (PrSntg. ---- 3,34 g.cm.-3); 

die Zelle enth£1t danach 8 Molekiile: 8 Kupfer-  und 
24 Stickstoffatome. Da in den bekannten  Aziden immer 
drei Stickstoffatome eine Ke t t e  bilden, wird das Gleiche 
uuch hier als Arbei tshypothese zur E rmi t t l ung  der 
S t ruk tu r  benutzt .  

Die F1/~chenstatistik fi ihrt  au f  ein raumzentr ier tes  
Gitter.  Die beobachteten AuslSschungen sind charak- 

D4h- teristisch fiir die Raumgruppen  C~-I41/a und 19 
I4/amd; mSglich sind ferner alle Raumgruppen  der 
Klassen C4h-4/m, C4-4, $4-4, sowie DI[ 4, 6, 7, 9,12,14,17, 19, 
n l - l O ,  C1~4, 6, 7, 9, 12 und D ~  5, s, 9, ll. 12 

Da zwischen D~-I4/amd und C~h-I4,/a nicht ex- 
perimentell  entsehieden werden konnte,* wurde die 
Ausschliessung auf  rechnerischem Wege vorgenommen. 
Die beiden Raumgruppen  unterscheiden sich durch die 
16- und 32-z~hligen Punkt lagen.  Wie bei der Dis- 
kussion von C~h-I41/a sp~ter gezeigt werden wird, 
kSnnen die 16 iiusseren Stickstoffatome nicht in den den 
beiden Raumgruppen  gemeinsamen 4- und 8-z~hligen 
Lagen untergebracht  werden. Ferner  ergab die Inten-  
sit~itsreehnung, dass mit  den bei D]~-I4/amd angege- 
benen 16-zithligen Lagen, bei denen die Ke t t en  nur  
senkrecht  zur c-Achse liegen kSnnen, die beobaehteten 
Intensi t~ten in keiner Weise wiedergegeben werden. 
Da ferner bei D~-I4/amd nur noch eine 32-z~hlige 
Punkt lage  zur Verffigung steht,  kann  diese Raum-  
gruppe fiir die S t ruk tu r  nicht in Frage  kommen.  

Die zweite wahrscheinliche Raumgruppe  ist C~a- 
I41/a. Hier stehen 4-, 8- und 16-z~hlige Punk t l agen  zur 

* Aus ~iussoren Griinden waren Schwenk- oder Goniometor- 
aufnahmon nicht mSglich. 
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