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with benzenoid rings are more important than struc-
tures with quininoid rings. It is of interest to test the
application of this rule to some of the structures and its
effect on the bond-length predictions.

In the case of pyrene, two of the six structures each
have three benzenoid rings, two have two benzenoid
rings, and two have only one. If the contributions of
these structures to the normal state are weighted in
proportion to their benzenoid character, the most im-
portant effect is to increase the length of the central
bond in Fig. 4 to 1-46 A., in good agreement with the
observations. The four inner bonds adjacent to it be-
come 1-40 A. instead of 1-42 A., while the other four
long bonds on the outer edge become 1:50 A. instead of
1-46 A. The general effect is thus to make some qualita-
tive improvement in the predicted bond lengths.

When the dibenzanthracene structures are treated in
the same way the effect is disappointing. The predicted
bond lengths in the central ring become equalized at
‘the benzene value of 1-39 A., while in other parts of
the molecule the values obtained are more extreme than
those shown in Fig. 9 and not in any better agreement
with the observations.

Of the twenty coronene structures, one contains five
benzenoid rings, eight contain four benzenoid rings, six
contain three benzenoid rings, three contain two benze-
noid rings and two contain only one benzenoid ring.
Weighting the contributions of the structures according
to these benzenoid characters has little effect on the
dimensions given in Fig. 13. Rather more extreme
values are obtained for the bond-length variations, but
the general picture is the same. In particular it may be
noted that no combination of the Kekulé structures is
capable of differentiating the longer bonds of the outer
ring from the bonds of the inner ring.
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The general impression based on our very limited
data is that application of the Fries rule tends to im-
prove the agreements slightly, and this finding is in
accordance with chemical experience as well as
theoretical expectation.

Figs. 2, 6 and 11 are reproduced by kind permission
from the Journal of the Chemical Society.
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Indexing Method of Powder Photographs of Long-Spacing Compounds

By VLADIMIR VAND
Research Laboratories, Lever Brothers and Unilever Limited, Port Sunlight, Cheshire, England

(Received T November 1947 and in revised form 13 January 1948)

A method suitable for indexing X-ray powder photographs of compounds which give long-spacing
reflexions is described. The method reduces the problem to that of a two-dimensional lattice. Asan
example, the unit cell of potassium caproate is deduced from its powder pattern by means of two
graphical variants of the method. Limitations of the method are discussed.

Introduction

Crystal structure study of many long-chain substances,
such as certain forms of soaps, fats and fatty acids, is
considerably hampered by the difficulty of growing
single crystals large enough for a complete X-ray dif-
fraction analysis. However, a considerable amount of

information can be obtained from powder photographs
and from other properties of the long-chain compounds,
provided the ‘long spacings’ can be measured. This
is due to certain characteristic peculiarities of their
crystals, which reduce the three-dimensional problem
of the determination of their crystal lattice to a simpler
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two-dimensional problem within a single sheet or layver
of the space lattice, and, although the information
gained may not be as complete as that obtained from
single-crystal work, it may prove to be of considerable
value.

We shall discuss only those compounds whose long
spacings can be unambiguously identified from powder
photographs. These compounds may be called ‘long-
spacing compounds’, in order to distinguish them
from ‘long-chain compounds’, such as polymers,
which do not necessarilv give identifiable long-spacing
reflexions.

Long-spacing compounds usually crystallize in very
thin plates, the only developed faces being {001}. Oc-
casionally they crvstallize in needles, but these can be
regarded as derived from plates by faster growth along
one of the short axes; the rod-like molecules as a rule
then do not lie along the needle axis, but rather per-
pendicular or at an angle to the needle axis. In this
respect, thev differ from the long-chain polyvmer fibres,
which usually have molecules oriented along the fibre
axis.

Theory of the indexing method
In a powder photograph, the crystal spacings d/n are

given by
d'n=>A/2sin 6. (1)

Their reciprocals, n.d = D}y, are the distances of the
points having Miller indices &, k, [, from the origin of the
reciprocal lattice. (All quantities referring to reciprocal
gpace or reciprocal lattice will be marked with an
asterisk, *.)

In order to index a trielinie erystal we have to find
six unknown parameters, the edges a*, b* ¢* and the
angles o*, B*, v* of the reciprocal unit cell, from a large
number of equations of the form:

Dy = R2a¥2 4 kP 0*2 4 [2 %2 4 201 b%c* cos o* ) y
+ 2lhc*a* cos f* + 2hka*b* cos y* |’ (=)
where £, k, [, are whole muubers, also unknown.

The problem is further complicated by missing re-
flexions due to the unknown space group absences, so
that in practice the indexing of powder photographs
can be successfully attempted only when the number of
unknown parameters is small. The indexing methods
hitherto used were successfully applied only to crystals
of high symmetry, such as cubic, orthorhombie, tetra-
gonal and hexagonal.

As the triclinic crystal involves six parameters, it
appears that the task of indexing a powder photograph
is very difficult. However, for crystals exhibiting long
spacings, considerable simplifications bring the number
of unknowns to be determined simultaneously from
six down to three or even two, thus bringing the general
problem of a triclinic crystal within practical reach of
solution.

By a simple rearrangement of the terms, we can
write equation (2) as follows:

Diyyy=h%a*? sin? B* 4 k2b%2 sin? o*

ST < Q% < %
) . cos a* cos f* —cos
— 2ha* sin B* x kb* sin o* - oos f¥—cos y

sin o* sin §*

+ (lc* + ha* cos B* + kb* cos x*)?

(3)
\ cox o* cos B¥ —cos y*
AS I U § 1§
sin «* sin B* &
we can write equation (3) in the form:
* *? *2
it = Hige+ Lo (4)

where the following notation is used:

HY =h2A%2 4 J2B¥2 _ 2hk 4% B* coxy,  (5)

Lyg=lc* +hA* cot f* + kB* cot a*, (6)
where A* =a* sin B*,
B* =b* sin o*. (7)

For crystals with long spacings ¢* is much smaller
than a* and *. In equation (4), ¢* does not appear
in H*,and the values of H* represent a two-dimensional
reciprocal lattice given by equation (5), having re-
latively large cell edges. On the other hand, the value
of L* is a linear function of I/, and on variation of 1 it
changes by much smaller steps than the variation of H*
when A and k are varied, as ¢* is small. For certain
values of /, it can also attain a small value, so that L*2,
although, in the general case of no symmetry, alwayvs
positive, can approach rather closely zero, or even
attain zero in special cases of higher crystal svmmetry.

Equation (4) can thus be easily visualized: the
powder diffraction pattern of a long-spacing compound
is composed of a large number of bands of closely spaced
lines, each band comprising all lines having the same
values of 2 and k, and beginning with a crowded ‘head’
whose distance from the origin in reciprocal space is
equal to H*; however, at the head of the band need be
neither (Ak0) nor the most intense line. As the chain
length of the molecules increases, the value of c¢* de-
creases, and the lines in cach band arc more crowded.
As the values of H* are independent of c*, they are
invariant for a series of substances all in the same
modification, differing in long spacing only.

If the resolving power of a powder camera were
sufficient and the background absent, so that all the
weak lines could be measured, the problem of indexing
a powder photograph of a triclinic ervstal would be
resolved first to the solving of the planar lattice given
by equation (5), which contains only three constants A4 ¥,
B* and y to be determined. Once these constants are
known, the application of equation (6) would yield the
remaining two unknowns, «* and 8*, and the problem
would be solved.
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Use of the density of the crystal
The density p of the crystalline powder can usually be
accurately measured. The volume occupied by one
molecule can then be calculated from

V,=16604M/p (in A3),
or ) V,=16502M/p (in kX.3),
where M is the molecular weight and ¥ is the volume
per molecule. If there are » molecules per unit cell, the
volume of the unit cell is V,,==V,.

Returning to the reciprocal space, we obtain for the
reciprocal volume per molecule in A.-3,

Vi=1/V,=p/1-66 M, (8)
and for the reciprocal volume of the unit cell:
VE=Viin.

The value of ¥} can usually be regarded as known,
but the factor =, representing the number of molecules
in the unit cell, which is a whole number, is unknown.
The following equation can then be used with advan-

tage: .
age Vi =a*b*c* sin * sin B* sin v, 9
and, as ¢* is known, this can be written as
V¥c*=nd*B* sin y. (10)

The right-hand side of this equation has a simple
meaning as the area of the unit cell of the planar lattice
defined by equation (5), multiplied by the factor n.

If any two of the three constants A*, B*, y are
known, then equation (10) gives the third, when
reasonable values of % are assumed. In the first step
of the calculation, the solution of the problem of a
triclinic crystal is reduced to a determination of only
two constants, equivalent to the recognition of two
heads of bands of lines on the photograph.

If only the head of the first band can be recognized,
the method cannot be applied to a triclinic but it is
still applicable to a monoclinic erystal, for which & =90°
and y=90° so that equations (5), (6) and (10) are
simplified into

H*?.: 2A*2+k2B*2’ (11)
L¥ =lc* +hA* cot B¥, (12)
VEjc* =nd*B*, (13)

However, sometimes even the head of the first band
might not be recognized without ambiguity, but if one
deals with a whole series of substances, known to be in
the same modification, then it may be possible to
decide which of the possible solutions is the most
probable.

Use of the inter-edge angles of the crystals

Owing to the thinnessof the crystals of the long-spacing
compounds, as a rule, only the {001} faces are well
developed, so that goniometric measurement of the
interfacial angles is impracticable. Only the infer-edge
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angles on the periphery of the plate are accessible to
measurement.

The crystals usually adhere with their {001} faces to
the microscope slide, so that both the ¢ and b crystallo-
graphic axes lie in the plane of the slide. If the inter-
ference figure can be seen, and if the crystal is mono-
clinic or orthorhombic, the directions of the @ and b
axes can then be determined, so that all the edge angles
can be measured from the b cell-edge and in the (001)
plane.

The edge indices will be enclosed in square brackets.
Two crystal faces (hkl) and (h'k'l’) intersect in an edge
having indices {A"k"l"], given by
kl Ih | ” | bk ‘

K el T Wk
(Zachariasen, 1945).

For a plate, one face of which is (001), any other face
having indices (h#l) would form an edge having indices
[kR0] independent of the index [ of the plane. The (100)
plane would thus form [010] edge, and the (010) plane,
[100] edge.

Let ¢(niq be the inter-edge angle between [010] and
[Ak0]. Then, for a monoclinic crystal,

tan @y,.o=ha/kb,
or, using relations (7),
tan ¢ =hB*[kA*.
The information obtained from the measurement of
the inter-edge angles is thus complementary to the in-
formation from the density measurements, the former

giving the ratio, the latter the product of the two lattice
constants 4%, B* of the reciprocal plane lattice (11).

hll = , k” =

Graphical application of the indexing method

Equations (4), (5) and (6) lend themselves to a
geometrical representation, so that the indexing can
be done most conveniently by graphical methods.

Two graphical methods have been devised; their
application to the same soap powder pattern is shown
in Figs. 1 and 2.

In the first method, shown in Fig. 1, it is necessary
only to plot, preferably in Indian ink, on as large a scale
as possible, all the observed reciprocal spacings in the
form of concentric semicircles each of radius D* and
centre at the origin of rectangular co-ordinates with
a horizontab X-axis and a vertical Y-axis. A separate
straight strip of paper is then prepared (not shown in
Fig. 1), along the edge of which is marked a series of
equidistant lines spaced by c* from each other. If this
strip is moved over the graph, keeping it parallel to the
X-axis, till its intersection with the Y-.axis is at a
distance Hj, from the origin, then a position can be
found at which the marks on the strip coincide with
all the circles belonging to the same band. By finding
such a coincidence, the head of the band can be re-
cognized and marked on the Y-axis. The coincidences



112 INDEXING METHOD OF POWDER PHOTOGRAPHS OF LONG-SPACING COMPOUNDS

are marked in Fig. 1 by black dots; the corresponding
Miller indices are marked above each dot.

The second graphical method, shown in Fig. 2, does
not use a separate strip of paper for finding coincidences;
instead of using the strip, the equidistant marks spaced
by ¢* from each other are marked on the X-axis of the
graph. Each mark so obtained then serves as a centre
of a complete set of concentric circles each of a radius
D*. Numerous intersections ot the circles thus result.
It can be easily proved that if a band H}, exists, all the
circles belonging to this band would intersect at a series
of points all lying at a distance Hj, from the N-axis.
In practice, owing to the repetition of the pattern of

o0

Fig. 1. Application of the first graphical method. Indexing of
potassium caproate powder pattern.

the diagram along the X-axis with the identity period
c*, it is necessary to investigate only a narrow strip of
the diagram running parallel to the Y-axis, the width
of which is that of the identity period.

The width of this strip is further reduced to ic*
owing to a line of symmetry parallel to the Y-axis and
passing at a distance c* from the origin. It is thus not
necessary to draw full circles; only small arcs of each
set of circles, which pass through the chosen strip, are
required. (In Fig. 2, in order to prevent confusion on
the scale of the figure, which is much smaller than is
used in practice, many arcs of circles have been
omitted.)

The second method has several advantages over the
first method. It economizes paper, as only the narrow
strip is to be preserved for reference. It records at once
permanently all the possible solutions of the problem in

the form of numerous intersections of circles. In
practice, it is more accurate than the first method, as
the best point of intersection of a Jarge set of circles all
belonging to the same band can be found with consider-
ably higher accuracy than the best-fitting position of
the movable graduated strip. In addition, the scatter
of the set of circles not exactly passing through their
common point of intersection, owing to the errors of
measurement, gives a good indication of the accuracy
of the measurements.

There is, however, one disadvantage of the more
condensed presentation of the second method, especially
when a small scale is used : the diagram tends to be over-

Fig. 2. Application of the second graphical method. Indexing
of potassium caproate powder pattern.

crowded, so that the indexing of the lines is more
difficult than in the first method.

Once the heads of the H* bands are found by either
method, the plane lattice (5) or (11) can be constructed
in the following way (shown in Fig. 1 only).

When the head of a first band is located and the
second band cannot be found by inspection, an attempt
may be made to locate it by assuming that the crystal
is monoclinic, and using equation (13). Iftwo heads are
located, equation (10) may be used to determine y.
Once the constants A*, B* and y are determined, all the
values of H* can be found graphically by plotting (pre-
ferably in pencil, so that alterations may be made) on
the same graph the plane lattice (5) or (11) and drawing
circles with centre at the origin (shown in Fig. 1 as
dashes) through its points till theyv intersect the Y-axis:
these points may then be confirmed as heads of bands
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either by applying the paper strip through them and
observing coincidences with the Indian ink circles, or
by finding intersections of the circles by the second
method, till all the reflexions are accounted for.

Next comes the determination of the angles «* and
B*. Two bands are chosen, preferably Hij, and HE .
In general, the choice of the angles o* and * is not
unique; in fact, any points on the first two independent
bands can be chosen having index [=0. If one point of
the band lies accurately on the Y-axis, it follows that
the crystal cannot be triclinic, as «* is a right angle.
Otherwise the best practice is either to choose the
strongest reflexion (which may lie some distance from
the head of the band) or the reflexion nearest to the
Y-axis, as having index I=0. The distance of this point
from the Y-axis is then

ro=hA* cot B¥+kB* cot o*, (14)
or for a monoclinic crystal
LY, =hA* cot B*. (15)

If the crystal is triclinic, the two independent values
of L* give us two equations from which the two un-
knowns cot «* and cot B* can be obtained. Once these
are fixed, distances L}, for all the other bands should
be calculated and confirmed from the graph.

From the construction six constants are thus obtained
which are ¢*, 4%, B¥, y, a*, B* arranged in the order as
obtained.

From these, the constants of the unit cell can be
calculated by means of the following equations:

a=1/(A*siny); b=1/(B*siny);
cos y* = cos o* cos B* —sin o* sin f* cosy, (16)

cos B* cos y¥ —cos o*
sin B* sin y*

COoS =

cos a* cos y* —cos g%

cos B= - -
B sin o* sin y*

1 1
C= = L TR T,
c* sin « sin ¥ c* sin o* sin

Refinement of the lattice constants

If the measurements are of a high degree of accuracy,
their accuracy may not be utilized to the full extent by
the use of the graphical methods described, as any
graphical method is necessarily limited in accuracy by
the size of the graph that can be used in practice. It
may thus be desirable to apply to the problems com-
puting methods, which are not limited in accuracy, and
to combine the measurements by the method of least
squares. The equations (4), (5) and (6) are suitable for
this purpose.

Let us assume that a sufficient number of lines in
a given band was unequivocally identified and indexed
and that their spacings were measured. In a band of

ACI
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constant Miller indices 2 and %, Hj, is constant. We
can write equation (4) as follows:

D} = Hi+ K+ 2K lc* + [2c*2,
where K}, =hA* cot B*+kB* cot o*

is also constant for a given band.
Let us write

(Diafc*)2—12=y,,
(Hy/c*)2+ (K /c*)2=q,

We thus obtain » linear equations

l:x,’

and 2K} /c*¥=p.

Yi=px;+q, i=1,2,...,n,

where x, are whole numbers, y; are known from measure-
ment, and p, g are two constants to be determined.

In order to determine p, ¢ with highest possible
accuracy any of the methods of calculation of the
constants in a linear law can be used. If the Gaussian
method of least squares is used, then, assuming that all
the equations have equal weight,

p=P|U, g=Q/U,
where
P=nZz,y,—Zr;3y;, Q=Za?Zy,—x;Zx;y;,
U=n Za%— (Zx,)%.
The probable errors in the values of p and ¢ are then
o, =0-6745 {nX8%/(n—2) U},
g =0-6745 {Za? Z8%/(n—2) U},
82’ = y: —Yi>
and where y; are values calculated from the equation
y;=px;+q, by using the calculated values of p and g.
The formulae do not apply to equations having unequal

weights.
Once p, q are determined, we can calculate H*, K*

from Hi.=c* (g—}p?)t and Kj,=ipc*.

where

The calculation of the other lattice constants can
then proceed on the same lines as described in previous
paragraphs, i.e. Hf gives 4*, Hy; gives B¥, H; gives
y, K and K% give then §* and o*, etc., so that the
best values of all the parameters of the unit cell may
be obtained together with their probable errors. This
method of least squares is not limited to powder photo-
graphs; it can be used for measurement of single crystal
photographs if required. It has been successfully used
in determining accurate values of the unit cell of
potassium caprate (KC,oH,40,) from its powder photo-
graph and single crystal photographs, details of which
will be published elsewhere (Vand, Lomer & Lang,
1947).

Example of the application of the graphical method
As an example of the application of the graphical
method the unit cell of potassium caproate (KCgH;,0,)
is derived from its powder pattern. This soap has been

8
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chosen for its comparatively small value of the long
spacing ¢ sin B (=18-89 kX.), so that the Figs. 1 and 2,
reproduced on a small scale, are not unduly over-
crowded. This, on the other hand, has a disadvantage
that the ‘heads’ of the bands are much more spread out
than in other cases, so that thev are rather more
difficult to detect on first inspection than in compounds
with reallv large long spacings.

The structure of potassium caproate has not vet been
described; we found that there exist several eryvstalline
forms of potassium soaps and that the potassium
caproate investigated belongs to a form provisionally
labelled as 4.

The powder pattern was obtained by Lomer (un-
published work) with a 12-5 em. focusing camera, using
Cu Ko nickel-filtered radiation. The measurements
are given in Table 1. Relative intensities of the lines
are expressed on a scale of the strongest short spacing
line taken as 100, and are given in the first column. In
the second column are given values of n/d expressed in
kX.-! In the third column are given the indices of the
lines, obtained by the graphical indexing methods, ax
deseribed.

Table 1. Pouder diffraction pattern of potassium
caproate (form A)

Relative Relative

intensity nid Index intensity njd Index

200 00528 001 1 0-4102 +

1 0-1052 002 1 0-4242 T

1 0-1596 003 2 0-4340 1

3 0-1825 011 5D 0-4432 +

3 0-2036 012 2 0-4560 T

40D |8‘_2,§§(_I| 1101 5 0-4617 ¥

10 0:2361 013 2 04774 T

30 0-2512 200 2 0-4827 t
30 0:2604 203 10 0-5023 {00t
2 0-2745 014, 202 N 0-3108 103+

100 03047 210 | 05340 +

&0 0-3096 200, 211 3 0-5479 t

1 03177 015 3 0-5657 +

40 0-3202 213 1 0-5880) +

1 0-3423 213 1 0-6006 ¥

1 0-3492 0260 2 0-6129 t

3 0-3535 021 2 0-G989 1

3 0-3643 + — - -—

1 03713 T - — —-

1 04006 + — . —

b = Diffuse.

t There are more than two possible ways of indexing these
reflexions.

The following data were used:

M=154-16
p=1-182 g.cm. 3

Molecular weight

Observed density

Reciprocal volume occupied by one 1'¥=4-640x 10-3 kNX.-3
molecule

Reciprocal long spacing

Reciprocal area of the unit cell of tho
planar lattice per single molecule

Inter-edge angles could not be measured.

c*=0:05293 kX. !
V¥/ic*=0-0887 kX.-?

By applying the first and the second graphical
nmethod, asshown on Figs. 1 and 2, the erystal was found
to be probably monoclinic, with A*=0-1254 kX.-! and
B*=0-1744 kX .-1 Assuming n =4 molecules per unit
cell, n4*B*=0-0875, which is in good agreement
with the value of V{/c* calculated from the den-
sity.

Taking for the (200) reflexion that which gives the
angle B nearest to 90°, 8=92°is obtained. This gives us
the following values of the unit cell:

a=797kX.,, 0=573kX., B=92°

csin B=18-89 kX., ¢=1890kX.

It should be noted that the whole (10/) band is
probably missing, and in addition the (010) reflexion of
the (017) band is probably missing. There is a tentative
indication of a glide plane and a screw axis, but the
determination of the space group is not possible from
the above data given by powder photographs. The (11/)
band is diffuse.

Conclusions

The method described is not as certain as single crystal
methods, mainly for the following reasons:

1. In a powder photograph many reflexions escape
detection, whereas they could be easily registered on
a single crystal photograph. Such reflexions may be
vital for deciding the dimensions of the unit cell, and
especially the symmetry and space group of the
crystal.

2. Even if the chemical purity of the samples is
guaranteed, the modification under investigation may
be contaminated by the presence of another modifi-
cation of the same substance, giving rise to additional
diffraction rings. Such rings may be very confusing
when using the method described, whereas this diffi-
culty rarely arises in single crystal work.

3. Evenifa sufficiently numerous series of substances
differing in chain length is available, it is not certain,
a priort, that the series is all in the same erystalline
modification. A useful criterion is to investigate the
long spacings and the densities: if the long spacings do
not form a linear function of the chain length and the
areas 1'f/c* are not constant, there are different modifi-
cations present.

4. If the c-edge is too short it may be difficult to
recognize the bands on the graph without ambiguity,
and there may even be difficulties in recognizing ¢*. On
the other hand, if the c-edge is too long, the individual
bands may become unresolvable by the camera.

Owing to these limitations, the indexing method for
powder photographs here described should not be re-
garded as an equivalent to a single crystal method, but
only as an alternative when single crystals are not
available. However, in spite of its limitations, the
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method has been applied with success to homologous
series of sodium, potassium, lithium and silver soaps
containing from four to twenty carbon atoms in the
hydrocarbon chains.

I wish to thank Mr A. Lang for the preparation of the

potassium caproate and Mr T. R. Lomer for measure-
ment of the photographs, and the Directors of Lever
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Brothers and Unilever Limited for permission to
publish this paper.
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Die Kristallstruktur des einwertigen Kupferazids, CuN3

Vox HEeinz WILSDORF
Institut fiir allgemeine Metallkunde, Géttingen, Deutschland

(Eingegangen 15 Januar 1948)

CuN, belongs to the space group C§,—I4,/a with cell dimensions a = 8-655 + 0-01 A.,c=559,+001A.,
c/a=0-646. The observed density is 3-26 g.cm.3, giving Z=8and a calculated density of 3-34 g.cm.—3
The atomic positions are: 8 Cuat (d); 8 Ny at (c); and 16 Ny; at (f) with parametersz = 0-:077,y=0-173,
2=0-250. The structure consists of Cu ions and of N, groups which are arranged in chains in the
direction of the body diagonal of the cell. The structure is not related to any known standard type.

Wihrend die strukturell bekannten anorganischen
Azide nur als ein- oder zweiwertige Verbindungen vor-
kommen, bildet die Stickstoffwasserstoffsdure mit
Kupfer das Monoazid CuN; und das Diazid Cu(Nj),.
Somit ist ein Vergleich von Strukturen mit einer oder
zwei Nj-Ketten bei dem gleichen Metall moglich. Als
erster Teil der Untersuchung soll in dieser Arbeit die
Struktur des CuN, beschrieben werden.

Die Darstellung des CuN, wurde zunéchst durch
Waéhler & Krupko (1913) und Martin (1915) bekannt.
Sie reduzierten eine Kupfersulfatlésung mit Kalium-
bisulfit, gaben sie zu Natriumazid und beobachteten
einen feinen weissen Niederschlag (Verfahren I). Bei
eigenen Versuchen nach diesem Verfahren konnten
Kristallnadeln bis zu 3 mm. Linge erhalten werden, die
rontgenographisch nach dem Drehkristallverfahren un-
tersucht wurden. Die Aufnahmen ergaben tetragonale
Symmetrie mit a =8,64 A.und ¢=5,60 A. Eine zweite
Moglichkeit der Darstellung wurde von Straumanis &
Cirulis (1943) beschrieben. Danach lasst man wéssrige
HN, auf Kupferpulver einwirken, das nach mehreren
Tagen in eine farblose Substanz iibergeht (Verfahren
1I), die dieselben Interferenzen wie die nach Verfahren
I dargestellten Kristalle zeigte. Aus den unregel-
missigen Aggregaten konnten keine Einkristalle
isoliert werden.

Fiir die genaue Bestimmung der Gitterkonstanten
(nach Straumanis) wurde ein Préparat nach Verfahren
I1 gewihlt, dasa=8,65; + 0,01 A. und c=5,59,+ 0,01 A.
ergibt; c/a=0,646. Die pyknometrisch bestimmte
Dichte betrigt p=3,26 g.cm.~® (prontg. = 3,34 g.cm.™3);

die Zelle enthilt danach 8 Molekiile: 8 Kupfer- und
24 Stickstoffatome. Da in den bekannten Azidenimmer
drei Stickstoffatome eine Kette bilden, wird das Gleiche
auch hier als Arbeitshypothese zur Ermittlung der
Struktur benutzt.

Die Flachenstatistik fihrt auf ein raumzentriertes
Gitter. Die beobachteten Ausloschungen sind charak-
teristisch fiir die Raumgruppen C$,~-I4,/a und D3-
14)amd; moglich sind ferner alle Raumgruppen der
Klassen C,,~4/m, C,~4, 8,—4, sowie Dj;% 8 7%9.12.14.17, 15,
D10 CL4 6 7. 9. 12 uynd D5 & 9 1. 12,

Da zwischen D}-I4/amd und C$,-I4,/a nicht ex-
perimentell entschieden werden konnte,* wurde die
Ausschliessung auf rechnerischem Wege vorgenommen.
Die beiden Raumgruppen unterscheiden sich durch die
16- und 32-zéhligen Punktlagen. Wie bei der Dis-
kussion von C%,-I4,/a spiter gezeigt werden wird,
konnen die 16 dusseren Stickstoffatome nicht in den den
beiden Raumgruppen gemeinsamen 4- und 8-zihligen
Lagen untergebracht werden. Ferner ergab die Inten-
sitdtsrechnung, dass mit den bei D}i—I4/amd angege-
benen 16-zihligen Lagen, bei denen die Ketten nur
senkrecht zur c-Achse liegen kénnen, die beobachteten
Intensitaten in keiner Weise wiedergegeben werden.
Da ferner bei D}3—I4/amd nur noch eine 32-zidhlige
Punktlage zur Verfiigung steht, kann diese Raum-
gruppe fiir die Struktur nicht in Frage kommen.

Die zweite wahrscheinliche Raumgruppe ist C§,—
I4,/a. Hier stehen 4-, 8- und 16-zéhlige Punktlagen zur

* Aus dusseren Griinden waren Schwenk- oder Goniometer-
aufnahmen nicht moglich.

8-2



